Mattes are used in photography and special effects filmmaking to combine two or more image elements into a single, final image. Usually, mattes are used to combine a foreground image (such as actors on a set, or a spaceship) with a background image (a scenic vista, a field of stars and planets). In this case, the matte is the background painting. In film and stage, mattes can be physically huge sections of painted canvas, portraying large scenic expanses of landscapes.
In film, the principle of a matte requires masking certain areas of the film emulsion to selectively control which areas are exposed. However, many complex special-effects scenes have included dozens of discrete image elements, requiring very complex use of mattes, and layering mattes on top of one another.
For an example of a simple matte, we may wish to depict a group of actors in front of a store, with a massive city and sky visible above the store's roof. We would have two images—the actors on the set, and the image of the city—to combine onto a third. This would require two masks/mattes. One would mask everything above the store's roof, and the other would mask everything below it. By using these masks/mattes when copying these images onto the third, we can combine the images without creating ghostly double-exposures. In film, this is an example of a static matte, where the shape of the mask does not change from frame to frame.
Other shots may require mattes that change, to mask the shapes of moving objects, such as human beings or spaceships. These are known as traveling mattes. Traveling mattes enable greater freedom of composition and movement, but they are also more difficult to accomplish. Bluescreen techniques, originally invented by Petro Vlahos, are probably the best-known techniques for creating traveling mattes, although rotoscoping and multiple motion control passes have also been used in the past.
Mattes are a very old technique, going back to the Lumière brothers. A good early American example is seen in The Great Train Robbery (1903) where it is used to place a train outside a window in a ticket office, and later a moving background outside a baggage car on a train 'set'.
Contents |
Originally, the matte shot was created by filmmakers obscuring their backgrounds with cut-out cards. When the live action portion of a scene was filmed, the background portion of the film wasn’t exposed. Once the live action was filmed, a different cut-out would be placed over the live action. The film would be rewound, and the filmmakers would film their new background. This technique was known as the in-camera matte and was considered more a novelty than a serious special effect during the late 1880s.[1]
Around this time, another technique known as the glass shot was also being used. The glass shot was made by painting details on a piece of glass which was then combined with live action footage to create the appearance of elaborate sets. The first glass shots are credited to Edgar Rogers.[1]
The first major development of the matte shot was the early 1900s by Norman Dawn ASC. Dawn had seamlessly woven glass shots into many of his films: such as the crumbling California Missions in the movie Missions of California[2], and used the glass shot to revolutionize the in-camera matte. Now, instead of taking their live action footage to a real location, filmmakers would shoot the live action as before with the cut-out cards in place, then rewind the film and transfer it to a camera designed to minimize vibrations. Then the filmmakers would shoot a glass shot instead of a live action background. The resulting composite was of fairly high quality, since the matte line – the place of transition from the live action to the painted background – was much less jumpy. In addition, the new in-camera matte was much more cost effective, as the glass didn’t have to be ready the day the live action was shot. One downside to this method was that since the film was exposed twice, there was always the risk of accidentally overexposing the film and ruining the footage filmed earlier.
The in-camera matte shot remained in use until the film stock began to go up in quality in the 1920s. During this time a new technique known as the bi-pack camera method was developed. This was similar to the in-camera matte shot, but relied on one master positive as a backup. This way if anything was lost, the master would still be intact.
Around 1925 another method of making a matte was developed. One of the drawbacks of the old mattes was that the matte line was stationary. There could be no direct contact between the live action and the matte background. The traveling matte changed that. The traveling matte was like an in-camera or bi-pack matte, except that the matte line changed every frame. Filmmakers could use a technique similar to the bi-pack method to make the live action portion a matte itself, allowing them to move the actors around the background and scene – integrating them completely.
The matte shot stayed relatively the same after the development of traveling matte. In about mid-1980s, advancements in computer graphics programs allowed matte painters to work in the digital realm. The first digital matte shot was created by painter Chris Evans in 1985 for Young Sherlock Holmes for a scene featuring a computer-graphics (CG) animation of a knight leaping from a stained-glass window. Evans first painted the window in acrylics, then scanned the painting into LucasFilm’s Pixar system for further digital manipulation. The computer animation blended perfectly with the digital matte, something a traditional matte painting could not have accomplished.[3]
The in-camera matte shot, also known as the Dawn Process[4] is created by first mounting a piece of glass in front of the camera. Black paint is applied to the glass where the background will be replaced. The actors are then filmed with minimal sets. The director shoots several minutes of extra footage to be used as test strips. The matte painter then develops a test strip (with the blacked out areas in the shot) and projects a frame of the 'Matted' shot onto the easel mounted glass. This test footage clip is used as the reference to paint the background or scenery to be matted in on a new piece of glass. The live action part of the glass is painted black, more of the test footage is then exposed to adjust and confirm color matching and edge line up. Then the critical parts of the matted live action scene (with the desired actions and actors in place) are threaded up for burning the painted elements into the black areas. The flat black paint put on the glass blocks light from the part of the film it covers, preventing double exposure over the latent live action scenes from occurring.
To begin a bipack matte filming, the live action portion is shot. The film is loaded and projected onto a piece of glass that has been painted first black, then white.[5] The matte artist decides where the matte line will be and traces it on the glass, then paints in the background or scenery to be added. Once the painting is finished the matte artist scrapes away the paint on the live action portions of the glass.[5] The original footage and a clean reel are loaded into the bi-pack with the original threaded so it passes the shutter in front of the clean tape. The glass is lit from behind, so that when the reels are both run, only the live action is transferred to the clean tape. The reel of original footage is then removed and a piece of black cloth is placed behind the glass. The glass is lit from the front and the new reel is rewound and run again. The black cloth prevents the already exposed footage from being exposed a second time; the background scenery has been added to the live action.
Another use of mattes in filmmaking is to create a widescreen effect. In this process, the top and bottom of a standard frame are matted out, or masked, with black bars, i.e. the film print has a thick frame line. Then the frame within the full frame is enlarged to fill a screen when projected in a theater.
Thus, in "masked widescreen" an image with an aspect ratio of 1.85:1 is created by using a standard, 1.37:1 frame and matting out the top and bottom. If the image is matted during the filming process it is called a hard matte due to its sharp edge. In contrast, if the full frame is filled during filming and the projectionist is relied upon to matte out the top and bottom in the theater, it is referred to as a soft matte, as the aperture plate is not on the focal plane and causes a soft edge.
In video, a similar effect is often used to present widescreen films on a conventional, 1.33:1 television screen. In this case, the process is called letterboxing. However, in letterboxing, the top and bottom of the actual image are not matted out. The picture is "pushed" farther back on screen and thus made "smaller", so to speak, so that, in a widescreen film, the viewer can see, on the left and right of the picture, what would normally be omitted if the film were shown fullscreen on television, achieving a sort of "widescreen" effect on a square TV screen. In letterboxing, the top of the image is slightly lower than usual, the bottom is higher, and the unused portion of the screen is covered by black bars. For video transfers, transferring a "soft matte" film to a home video format with the full frame exposed, thus removing the mattes at the top and bottom, is referred to as an "open matte transfer." In contrast, transferring a "soft matte" film to a home video format with the theatrical mattes intact is referred to as a "closed matte transfer."
A "garbage matte" is often hand-drawn, sometimes very quickly made, and can be used to exclude parts of an image that another process, such as bluescreen, would not remove. The name stems from the fact that the matte removes "garbage" from the procedurally produced image. This "garbage" might include a rig that is holding a model or the lighting grid above the top edge of the bluescreen. Garbage mattes can also be used to include parts of the image that might otherwise have been removed by the bluescreen, such as too much blue reflecting on a shiny model ("blue spill").